Share

Arctic Storms, Warming Temperatures Allowing More Methane To Surface

Brian Kahn
Published: November 25, 2013

Underneath the Arctic Ocean sits a large reserve of methane, a potent greenhouse gas. Understanding how much of that is making it to the atmosphere is an important but relatively new area of research. The latest findings published on Sunday in Nature indicate that more could be escaping than previously thought, thanks in part to stormy weather.

The East Siberian Arctic Shelf is a shallow swath of land underneath the East Siberian Sea. It stretches for 2 million square miles and contains large deposits of methane hydrates, which are frozen deposits of highly concentrated methane.

When the hydrates melt, they turn into methane gas, a greenhouse gas that is 25 times more potent than carbon dioxide. Methane hydrates are found throughout the world's oceans but generally under hundreds of feet of water.

That means as they melt, there's more time for the gas to disperse and mix with the surrounding ocean water. But because the East Siberian Arctic Shelf is much shallower, with an average depth of 150 feet, there's more of a chance for that methane gas to reach the surface.

That's why understanding how much methane is stored in the shelf and if those stores are stable is so important to climate researchers.

Methane 'bomb'?

Some scientists suggested earlier this year that a massive release of methane from the shelf, referred to as a "methane bomb," could cause abrupt climate change and cost the global economy $60 trillion.

That claim has been met with much skepticism, in part because the amount of methane the shelf is currently releasing and the conditions it's stored under aren’t fully understood. The remoteness, logistics and inclement weather have impeded scientists’ research access to the region until fairly recently and data has been sparse.

That, however, is beginning to change.

“In 2003, we started from zero observational data on methane available for this area,” Natalia Shakhova, an Arctic researcher at the University of Alaska and lead author of the new study, said.

Her previous work built a body of evidence for how methane leaked from the seabed while her new study refines the numbers a bit more and finds that strong storms can help stir methane up the water column quickly and release it into the atmosphere.

Shakhova has spent the past decade compiling data on the East Siberia Arctic Shelf through research cruises and flyovers of the region. She published initial results in 2010, which showed that methane has been escaping at hot spots where vents have formed from a combination of geothermal heat as well as warmer river water flowing into the region.

Those results showed that 7 teragrams of methane is bubbling to the surface annually. That's roughly the equivalent of 10 percent of the methane emissions from U.S. oil and natural gas production and transmission in 2012.

More than double previous estimates

The new research refined those results, showing the amount of methane reaching the surface is more than double those previous estimates. In all, Shakhova and her colleagues estimate that 17 teragrams are escaping each year, though the new study says the estimates are likely on the conservative end. Shakhova said those totals are on par with emissions from the Arctic tundra.

One of the reasons for the revised estimates was more rigorous measurements using an unmanned underwater vehicle with advanced sonar technology. It provided a clearer image of the seafloor and the amount of methane escaping from vents.

Shakhova's research also shows that annual bottom water temperatures have increased 0.9°F over the past 14 years while summer temperatures have increased 1.8°F over the same period. That’s due in large part to increased runoff from rivers, which generally have warmer water than the Siberian Sea. Other research has pegged that increase at 7 percent from 1936 to 1999.

Another method Shakhova and her colleagues used to update their estimates involved taking methane measurements before and after storms passed over the shelf. The Siberian Sea has up to 70 stormy days annually when winds can help churn deeper water toward the surface.

Shakhova measured the amount of methane before and after storms in both the water column and atmosphere. After storms, methane was greatly reduced in the water column, indicating storms were helping ventilate methane into the atmosphere more rapidly.

“We should have much more concerns regarding subsea permafrost than we previously had,” Shakhova said about her results.

At the same time, she downplayed tying the research to the methane bomb theory espoused earlier this year, saying there’s not enough evidence to make that connection.

David Archer, a carbon cycle expert at the University of Chicago agreed. “In order to ignite an Arctic methane bomb you would have to ramp up (emissions) by a factor of 10 or 100 very quickly, and there's no evidence or any proposed mechanism that could make it blow up that quickly,” he said in an email.

Archer also said that while the new research shows more methane is being emitted from the area than previously thought, it still represents only about 3 percent of global methane emissions from natural and human sources.

Related Content from Climate Central

Arctic Sea Ice Extent on Aug. 26, 2012

Arctic Sea Ice Extent on Aug. 26, 2012

NASA

This visualization shows the extent of Arctic sea ice on Aug. 26, 2012, compared to the average sea ice minimum from 1979 through 2010 shown in orange. The sea ice dipped to its smallest extent ever recorded in more than three decades, according to scientists from NASA and the National Snow and Ice Data Center.

  • Arctic Sea Ice Extent on Aug. 26, 2012
  • East Greenland Sea Ice, Aug. 17
  • Summer Storm Spins Over the Arctic
  • Glassy Sea Ice with Iceberg
  • Sunset in the Arctic
  • Varied Arctic Sea Ice
  • Arctic Sea Ice Lead

Featured Blogs

93L in Eastern Atlantic Growing More Organized

By Dr. Jeff Masters
July 28, 2014

An area of disturbed weather located near 10°N, 33°W at 8 am EDT Monday, about 500 miles southwest of the Cape Verde Islands, was designated Invest 93L by NHC early Monday morning. This disturbance is a more serious threat than Tropical Depression Two of last week, and has the potential to develop into a strong tropical storm before reaching the Lesser Antilles Islands on Friday or Saturday.

June 2014 Global Weather Extremes Summary

By Christopher C. Burt
July 26, 2014

June was globally the warmest such on record according to NOAA/NCDC. See Jeff Master’s blog about this posted last Thursday. The month featured heat waves in portions of Japan, China, Western Europe, Central Asia, and Mexico. Late season cold and even some snowfall were observed in Estonia, Russia, and Scandinavia mid-month. Deadly flooding occurred in Bulgaria, Paraguay, Afghanistan, India and Sri Lanka. An intense dust storm struck Tehran, Iran on June 2nd. Yet another intense hurricane (Cristina) formed in the Eastern Pacific.

Live Blog: Tracking Hurricane Arthur as it Approaches North Carolina Coast

By Shaun Tanner
July 3, 2014

This is a live blog set up to provide the latest coverage on Hurricane Arthur as it threatens the North Carolina Coast. Check back often to see what the latest is with Arthur. The most recent updates are at the top.

Tropical Terminology

By Stu Ostro
June 30, 2014

Here is some basic, fundamental terminology related to tropical cyclones. Rather than a comprehensive and/or technical glossary, this represents the essence of the meaning & importance of some key, frequently used terms.

2013-14 - An Interesting Winter From A to Z

By Tom Niziol
May 15, 2014

It was a very interesting winter across a good part of the nation from the Rockies through the Plains to the Northeast. Let's break down the most significant winter storms on a month by month basis.

What the 5th IPCC Assessment Doesn't Include

By Angela Fritz
September 27, 2013

Melting permafrost has the potential to release an additional 1.5 trillion tons of carbon into the atmosphere, and could increase our global average temperature by 1.5°F in addition to our day-to-day human emissions. However, this effect is not included in the IPCC report issued Friday morning, which means the estimates of how Earth's climate will change are likely on the conservative side.