More on Lake Erie Temperature Trends & Gardening in the Great Lakes

By: ClimateChange , 5:41 PM GMT on August 04, 2012

Share this Blog
3
+

Thursday, I posted about observed water temperature increases at the Buffalo Water Treatment Plant site. To remove the seasonality from the data (and better discern trends), I converted all of the data since 1960 to an annual departure relative to the 1960-2012 period. So far, 2012 has averaged 2.8C above the mean for the 1960-2012 period. The current warmest year on record is 1998 at +1.8C above the mean. The annual water temperature has been increasing at 0.29C per decade since 1960.


Perhaps more stunning is the decrease in number of days with a water temperature of 32F during that period. These readings are taken 35' below the surface, so when the surface is covered or substantially covered in ice, the water temperature is usually 32. The chart shows that the annual number of 32F readings has been decreasing at a rate of over 1 day per year! In recent years, the rate of change appears to be increasing. Both 2012 and 1998 had 0 such days, while 2002 had just one. By contrast, 1964 had 139 days, and 1971 138 days.



These graphics show an umistakable warming of the Lake Erie climate system. As the region continues to experience warming, winter ice coverage will continue its marked decline. The decrease in ice cover will itself greatly affect the climate of surrounding areas. This will be accomplished by two means: (1) the warmer, open waters will better modify arctic airmasses moving southeast from Canada; and (2) the warmer, open waters will contribute to increased cloudiness & precipitation, which will make conditions less favorable for extreme cold.

This effect is already apparent in data from observation sites downwind of the Great Lakes. I took a look at the coldest minimum annual temperature at the Youngstown-Warren Regional Airport in northeast Ohio. As a native of the area, this should be a good site to conduct this analysis, as it is a small airport with minimal traffic and little, if any, contamination from surrounding land use over the period being considered.

In the 1960s, the average minimum temperature was -8.0F; in the 1970s, -8.6F; in the 1980s, -11.3F; in the 1990s, -3.2F; in the 2000s, -2.3F; and in the 2010s, +0.0F. As you can see, the trend is definitely up, with fewer days of extreme cold. The USDA plant hardiness zone maps illustrate this to some extent, but they are already obsolete. According to the most recent update, released just last year and based on data compiled from 1976-2005, this area is in zone 6a, with an average minimum temperature between -5 and -10F. In the last 15 years, however, the actual average minimum temperature is just -1.2F, well within zone 6b (almost nearing the threshold of 0F for zone 7!). In fact, in the 2010s, the average minimum temperature is just 0.0F. This is based on just three years; nonetheless, it does include data from two (allegedly) "bitter" cold winters (2009-10 & 2010-11). In fact, those winters were not particularly cold and would have been milder than most winters in the 60s, 70s, & 80s.



Closer to the lake and in more urbanized areas, zone 7 temperatures are already evident. Since 1998, the average minimum temperature at Cleveland Hopkins International has actually been above 0F. The official USDA plant hardiness map classifies no part of Ohio as zone 7, but more recent data shows this to be false. For gardeners, this means you can probably begin experimenting with different plants that traditionally would not grow in northern Ohio and surrounding areas. If current trends continue, much of northeast Ohio, will likely be zone 7 by the 2020s. Should warming continue to increase in rate, as projected, and ice coverage continue to decline over the Great Lakes basin, the effects may be even more substantial. By mid to late century, I wouldn't be surprised to see zones 8 or even 9+ begin to appear.

You seldom hear much about the actual effects of global warming and how global warming will manifest itself. This is how! On a high emissions path, the Great Lakes region is on a collision course with a subtropical or even tropical climate. Models project up to 6C of globally-averaged warming within the next century under a high emissions path, which would likely result in 9 or 10C of warming at mid-latitude landmasses, such as the Great Lakes region.

Reader Comments

Comments will take a few seconds to appear.

Post Your Comments

Please sign in to post comments.

or Join

Not only will you be able to leave comments on this blog, but you'll also have the ability to upload and share your photos in our Wunder Photos section.

Display: 0, 50, 100, 200 Sort: Newest First - Order Posted

Viewing: 3 - 1

Page: 1 — Blog Index

3. ClimateChange
6:29 PM GMT on August 19, 2012
Quoting JohnLonergan:
ClimateChange

There seems to be a problem with your graphics.

You raise a lot of good questions and areas to study.
One thing you didn't mention was the fisheries, the warming wil raise havoc with the cold water species.

\\

Hey, I think it was a problem with the image hosting site I used. I switched it to ImageShack, so I'm hoping this works now!
Member Since: September 8, 2011 Posts: 8 Comments: 245
2. ClimateChange
11:16 PM GMT on August 04, 2012
Quoting JohnLonergan:
ClimateChange

There seems to be a problem with your graphics.

You raise a lot of good questions and areas to study.
One thing you didn't mention was the fisheries, the warming wil raise havoc with the cold water species.



Good point. I also made a graphic of the annual maximum water temperature off the coast of Buffalo. Water temperatures have been rising even more in the summer. This summer we've seen that throughout the Great Lakes system. Below is the chart of annual max water temp at this site. It shows an average increase of .5F per decade. The all-time record high is 80, set in 2011 & 1988. So far, in 2012, the max has been 77, which is the current reading. However, there is a chance for this to go even higher. As the climate continues to warm, it is likely that water temperatures in the mid and upper 80s will become commonplace during the summer. This will certainly strain the fish populations.

Member Since: September 8, 2011 Posts: 8 Comments: 245
1. JohnLonergan
9:39 PM GMT on August 04, 2012
ClimateChange

There seems to be a problem with your graphics.

You raise a lot of good questions and areas to study.
One thing you didn't mention was the fisheries, the warming wil raise havoc with the cold water species.

Member Since: June 27, 2012 Posts: 0 Comments: 3678

Viewing: 3 - 1

Page: 1 — Blog Index

Top of Page

About ClimateChange

Just an ordinary guy with a penchant for the weather and climate!